Researchers at the University of Kentucky are exploring new ways to use nanoparticles in combination with other materials as an innovative approach to cancer therapy.
The paper titled 鈥淚ron Oxide Nanozymes Enhanced by Ascorbic Acid for Macrophage-Based Cancer Therapy鈥 was published earlier this year in , a high-impact journal in the fields of nanoscience and nanotechnology.
Sheng Tong, PhD, an associate professor in the F. Joseph Halcomb II, MD, Department of Biomedical Engineering in the and a member of the , led the study which was funded by multiple awards from the .
The team of researchers focused on nanozymes, a type of magnetic nanoparticle with enzymatic activity, as a strategy to enhance the tumor suppressing activity of ascorbic acid.
鈥淎scorbic acid, or vitamin C, has been used recently for cancer treatment because of its antioxidant properties. However, its use is limited by the high doses needed to be effective,鈥 Tong said. 鈥淲e chose to explore the potential of nanozymes to expand the efficacy of ascorbic acid in cancer treatment.鈥
Researchers found that the effectiveness of the treatments depends on the order in which they鈥檙e administered.
Combining these nanoparticles with ascorbic acid destroyed cancer cells only when the nanoparticles were added first and got inside the cells. Conversely, if the nanoparticles and ascorbic acid were outside the cells together, their effect was nullified.
鈥淭his discovery underscores the significance of coordinating nanoparticles and ascorbic acid in cancer treatment as their utilization with other agents necessitates meticulous coordination,鈥 Tong said.
Researchers also engineered a specific type of immune cell 鈥 macrophages 鈥 to carry the nanoparticles to the tumor site. Macrophages are naturally attracted to tumors, and when loaded with magnetic nanoparticles, they can be further guided to the tumor using an external magnetic field.
In their laboratory testing, the biomedical engineers combined breast cancer cells and macrophages loaded with the nanoparticles. Once they added ascorbic acid, the tumor-killing effect was significantly enhanced. By taking this approach, macrophages preloaded with nanoparticles could be used as an aid to ascorbic acid for cancer treatment.
Overall, the research presents a method that combines nanoparticles and immune cells as a promising approach for novel therapies.
鈥淭his discovery prompts further exploration, charting a path towards an innovative combination therapy,鈥 Tong said.